Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS	0606/22
Paper 2	March $\mathbf{2 0 2 1}$
MARK SCHEME	
Maximum Mark: 80	

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE ${ }^{\text {M }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1	$\begin{aligned} & 4 x+9=6-5 x \text { oe } \\ & \text { or } 4 x+9=5 x-6 \text { oe } \end{aligned}$	M1	
	$x=-\frac{1}{3}, x=15$ mark final answer	A2	not from wrong working; no extras A1 for $x=15$ ignoring extras implies M1 if no extras seen If M0 then $\mathbf{S C 1}$ for any correct value with at most one extra value
	Alternative method: M1 for $(4 x+9)^{2}=(6-5 x)^{2}$ oe soi		
	A1 for $9 x^{2}-132 x-45=0$ oe		
	A1 for $x=-\frac{1}{3}, x=15$ only; mark final answer		
2	Uses $b^{2}-4 a c$ with at most one error in substitution: $(-3(k+1))^{2}-4(k)(25) * 0$	M1	
	$9 k^{2}-82 k+9 * 0$	A1	
	Factorises or solves their 3-term quadratic	M1	
	$k=\frac{1}{9}$ or 9 ; mark final answer	A1	
3(a)	$a=2, b=1, c=-1$	B2	B1 for any two correct
3(b)	Finds three correct critical values: -1.5 to -1.4 inclusive -0.4 0.8 to 0.9 inclusive	B1	
	A correct pair of inequalities	B2	B1 for either inequality correct

Question	Answer	Marks	Partial Marks
4	Correctly eliminates one unknown: $\begin{aligned} & \frac{4}{(-2 y)^{2}}+\frac{5}{4 y^{2}}=1 \\ & \text { or } \frac{4}{x^{2}}+\frac{5}{4\left(-\frac{x}{2}\right)^{2}}=1 \end{aligned}$	M1	
	Simplifies and rearranges e.g. : $\begin{aligned} & \frac{4}{4 y^{2}}+\frac{5}{4 y^{2}}=1 \rightarrow 4+5=4 y^{2} \\ & \text { or } \frac{4}{x^{2}}+\frac{5}{x^{2}}=1 \rightarrow 4+5=x^{2} \end{aligned}$	M1	FT omitted brackets; condone one slip
	$y= \pm \frac{3}{2}$ and $x= \pm 3$ oe	A2	A1 for $y= \pm \frac{3}{2}$ or $x= \pm 3$
	$\sqrt{(3--3)^{2}+(1.5--1.5)^{2}}$	M1	FT their $y= \pm \frac{3}{2}$ and $x= \pm 3$ provided that no FT coordinate is 0
	$\sqrt{45}$ or $3 \sqrt{5}$ indicated as final answer	A1	
5(a)	$\left[\frac{\mathrm{d}\left(x^{3}\right)}{\mathrm{d} x}=\right] 3 x^{2}$ and $x=\sqrt[3]{512}$ soi OR $\left[\frac{\mathrm{d}(\sqrt[3]{V})}{\mathrm{dV}}=\right] \frac{1}{3} V^{-\frac{2}{3}}$	B1	
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \times \frac{\mathrm{d} x}{\mathrm{~d} V}$ oe, soi	B1	
	$\frac{480}{3(8)^{2}}$ oe	M1	FT their $\frac{\mathrm{d} V}{\mathrm{~d} x}=k(8)^{2}$ or $\frac{\mathrm{d} x}{\mathrm{~d} V}=k(512)^{-\frac{2}{3}} k \neq 0$
	2.5 oe	A1	
5(b)	$12(8) \times$ their 2.5 soi	M1	FT their 8 provided it is not 512
	240	A1	FT provided at least M1 earned in (a)

Question	Answer	Marks	Partial Marks
6(a)	$\begin{aligned} & \sqrt{16^{2}+7.5^{2}-2(16)(7.5) \cos \frac{2 \pi}{7}} \\ & +(16-7.5)+16 \times \frac{2 \pi}{7} \\ & \text { oe, soi } \end{aligned}$	M2	M1 for $\sqrt{16^{2}+7.5^{2}-2(16)(7.5) \cos \frac{2 \pi}{7}}+(16-7.5)$ or for $16 \times \frac{2 \pi}{7}$ seen
	35.6 or 35.6 to 35.614	A1	
6(b)	$\begin{aligned} & \frac{1}{2} \times 16^{2} \times \frac{2 \pi}{7}- \\ & \frac{1}{2} \times 16 \times 7.5 \times \sin \left(\frac{2 \pi}{7}\right) \mathrm{oe} \end{aligned}$	M2	M1 for either $\frac{1}{2} \times 16^{2} \times \frac{2 \pi}{7}$ or $\frac{1}{2} \times 16 \times 7.5 \times \sin \left(\frac{2 \pi}{7}\right)$
	68[.0] or 67.98 to 68.0	A1	
7(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-8 x+6$	B1	
	Finds their $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right\|_{x=3}$	M1	condone one slip
	$m_{T_{1}}=9$	A1	
	$\begin{aligned} & y-8=\text { their } 9(x-3) \\ & \text { or } y=9 x+c \text { and } 8=9(3)+c \end{aligned}$	M1	
	$y=9 x-19$ cao	A1	
7(b)(i)	$m_{T_{2}}=\frac{1}{\text { their } 9}$	B1	FT their 9
7(b)(ii)	[Uses $y=x$ in their $(y=9 x-19)$ to form] their $(x=9 x-19)$ or their $(y=9 y-19)$ oe and solves for x or y or solves e.g. their $(9 x-19)=$ their $\frac{x+19}{9}$	M1	
	$\left(\frac{19}{8}, \frac{19}{8}\right)$ oe	A1	FT equal x and y coordinates providing at least 3 marks earned in (a)
8(a)(i)	479001600 oe	B1	
8(a)(ii)	$3 \times 10!\times 4$ oe	M1	
	43545600 oe	A1	

Question	Answer	Marks	Partial Marks
8(a)(iii)	$5!\times 8 \times 7$! oe	M1	
	4838400 oe	A1	
8(b)(i)	${ }^{9} \mathrm{C}_{3}$	M1	
	84	A1	
8(b)(ii)	${ }^{3} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1}$ oe	M1	
	60	A1	
9(a)	Identifies the correct term: ${ }^{5} \mathrm{C}_{2} \times(2 k)^{3} \times\left(-\frac{1}{k}\right)^{2} \quad\left[x x^{2}\right]$ oe, soi	B1	
	$10 \times \frac{8 k^{3}}{k^{2}}=160 \mathrm{soi}$	M1	FT only for correct term with bracketing errors; condone one slip in simplification
	$k=2 \mathrm{nfww}$	A1	
9(b)(i)	$1+18 x+135 x^{2}$	B2	B1 for any 2 terms correct or for all 3 correct terms listed but not summed or M1 for a correct unsimplified expansion e.g. : $1+6(3 x)+15(3 x)^{2}$
9(b)(ii)	Uses constant/coefficient of x to find $a=-2$ only	B2	B1 for both $a=2$ and -2 or for both $a=\frac{17}{9}$ and -2
	$b=469$ only	B1	FT their calculated value of a
10(a)(i)	Range $\mathrm{f}^{-1}: 0.5 \leqslant \mathrm{f}^{-1} \leqslant 1.5$	B1	
	Domain $\mathrm{f}^{-1}: 0 \leqslant x \leqslant \frac{2 \sqrt{2}}{3}$ oe	B2	B1 for 0 and $\frac{2 \sqrt{2}}{3}$ in an incorrect inequality or for $x \geqslant 0$ or $x \leqslant \frac{2 \sqrt{2}}{3}$

Question	Answer	Marks	Partial Marks
10(a)(ii)	Correctly collects terms ready to factorise e.g. $4 x^{2}-4 x^{2} y^{2}=1$ or $4 y^{2} x^{2}-4 y^{2}=-1$ or simplifies to subject in one term only e.g. $\frac{1}{4 y^{2}}=1-x^{2}$ or $-\frac{1}{4 x^{2}}=y^{2}-1 \mathrm{oe}$	M1	
	Correctly factorises and/or rearranges at least as far as: $x^{2}=\frac{1}{4-4 y^{2}}$ or $y^{2}=\frac{-1}{4 x^{2}-4}$ oe	M1	FT only if of equivalent difficulty
	$\begin{aligned} & {\left[\mathrm{f}^{-1}(x)=\right] \sqrt{\frac{1}{4-4 x^{2}}} \text { or }} \\ & {[y=] \sqrt{\frac{-1}{4 x^{2}-4}} \text { oe, isw }} \end{aligned}$	A1	
10(b)	Correct order of composition: $\operatorname{gf}(x)=\mathrm{e}^{\left(\frac{\sqrt{4 x^{2}-1}}{2 x}\right)^{2}}$	M1	
	$\operatorname{gf}(x)=\mathrm{e}^{\left(1-\frac{1}{4 x^{2}}\right)} \text { isw }$	A1	
11(a)(i)	$\frac{(10 x-1)^{-5}}{-5 \times 10}(+c)$ isw	B2	B1 for $k \frac{(10 x-1)^{-5}}{-5}(+c)$, where $k \neq \frac{1}{10}$
11(a)(ii)	$\int\left(4 x^{5}+20 x^{2}+\frac{25}{x}\right) \mathrm{d} x$	B1	
	$\frac{4}{6} x^{6}+\frac{20}{3} x^{3}+25 \ln x+c$	B2	B1 for any 3 terms correct
11(b)(i)	$3 \sec ^{2}(3 x+1)$	B2	B1 for $k \sec ^{2}(3 x+1)$ where $k \neq 3$

Question	Answer	Marks	Partial Marks
11(b)(ii)	$\int_{\text {oe, soi }} \frac{\sec ^{2}(3 x+1)}{2} \mathrm{~d} x=\frac{\tan (3 x+1)}{6}$	B1	
	$-\int \sin x \mathrm{~d} x=\cos x$ oe	B1	
	$\mathrm{F}\left(\frac{\pi}{10}\right)-\mathrm{F}\left(\frac{\pi}{12}\right)$ where $\mathrm{F}(x)=k_{1} \tan (3 x+1)+k_{2} \cos x$ oe	M1	
	0.322 or $0.3222[32 \ldots]$ rot to 4 figs	A1	
12	For $0 \leqslant t \leqslant 2: \quad \int \frac{t}{2 \mathrm{e}} \mathrm{d} t=\frac{t^{2}}{4 \mathrm{e}}$	B1	
	For $t>2$: $\int \mathrm{e}^{-\frac{t}{2}} \mathrm{~d} t=-2 \mathrm{e}^{-\frac{t}{2}}+\frac{3}{\mathrm{e}}$ oe	B2	B1 for $\int \mathrm{e}^{-\frac{t}{2}} \mathrm{~d} t=-2 \mathrm{e}^{-\frac{t}{2}}(+c)$ oe
	$\begin{aligned} & -2 \mathrm{e}^{-\frac{3}{2}}+\frac{3}{\mathrm{e}}-\frac{1}{4 \mathrm{e}} \\ & \text { OR }\left(-2 \mathrm{e}^{-\frac{3}{2}}+\frac{3}{\mathrm{e}}-\frac{1}{\mathrm{e}}\right)+\left(\frac{1}{\mathrm{e}}-\frac{1}{4 \mathrm{e}}\right) \end{aligned}$	M2	M1 for $[s(1)=] \frac{1}{4 \mathrm{e}} \text { and }[s(3)=]-2 \mathrm{e}^{-\frac{3}{2}}+\text { their } \frac{3}{\mathrm{e}}$ or at least one term correct in the difference: $\left(-2 \mathrm{e}^{-\frac{3}{2}}+\text { their } \frac{3}{\mathrm{e}}\right)-\frac{1}{4 \mathrm{e}}$ or for one bracket correct in: $\left(-2 \mathrm{e}^{-\frac{3}{2}}+\text { their } \frac{3}{\mathrm{e}}-\frac{1}{\mathrm{e}}\right)+\left(\frac{1}{\mathrm{e}}-\frac{1}{4 \mathrm{e}}\right)$
	0.565 or 0.5654 to 0.56541 nfww	A1	

Question	Answer	Marks	Partial Marks
12	Alternative method (using def int): M1* for $=\left[\frac{t^{2}}{4 \mathrm{e}}\right]_{1}^{2}$		
	M1 for $\left(\frac{4}{4 \mathrm{e}}-\frac{1}{4 \mathrm{e}}\right)$ oe (dep*)		
	M1** for $\left[-2 \mathrm{e}^{-\frac{t}{2}}\right]_{2}^{3}$		
	M1 for $\left(-2 \mathrm{e}^{-\frac{3}{2}}+\frac{2}{\mathrm{e}}\right)$ oe $($ dep**)		
	M1 for $\left(-2 \mathrm{e}^{-\frac{3}{2}}+\frac{2}{\mathrm{e}}\right)+\left(\frac{4}{4 \mathrm{e}}-\frac{1}{4 \mathrm{e}}\right)$ oe		
	A1 for 0.565 or 0.5654 to 0.56541 nfww		

